$\mathrm{TPC1}-\mathrm{Programme}$ de colle du 29/09 au 03/10

[O2] MIROIRS PLANS ET LENTILLES MINCES

<u>-</u>	•
Rer	narque : Cours et exercices.
	Reconnaître graphiquement un objet ou une image, situé(e) à distance finie ou infinie, et la nature réel(le) ou virtuel(le).
	Définir le stigmatisme et l'aplanétisme.
	Énoncer les conditions de Gauss et ses conséquences : stigmatisme approché, approximation des petits angles.
	Connaître les développements limités pour $\theta \ll 1$ rad : $\cos(\theta) \simeq 1$ et $\sin(\theta) \simeq \tan(\theta) \simeq \theta$
	Construire l'image d'un objet par un miroir plan.
	Définir les propriétés du centre optique, des foyers principaux et secondaires d'une lentille mince. Définir la distance focale et de la vergence.
	Construire l'image d'un objet par une lentille mince.
	Établir la condition $D \ge 4f'$ de formation d'une image réelle d'un objet réel par une lentille convergente.
[C	O3] Instruments d'optique
Rer	narque : Cours et exercices.
	Modéliser l'œil comme l'association d'un diaphragme, d'une lentille de vergence variable et d'un capteur plan fixe.
	Pour un œil emmétrope, connaître l'ordre de grandeur :
	– de la plage d'accommodation : $d_{\rm PP} \simeq 25~{\rm cm}$ et $d_{\rm PR} = \infty$;
	– de la limite de résolution : $\alpha_{min} \simeq 1' = 3 \times 10^{-4} \text{ rad.}$
	Savoir construire l'image d'un objet à travers un système optique à plusieurs lentilles. Exemples de cours : loupe, microscope, lunette astronomique.
	Modéliser l'appareil photographique numérique comme l'association d'un diaphragme, d'une lentille de position variable et d'un capteur.
	Définir la profondeur de champ à l'aide d'un schéma.
	Connaître l'influence de la focale, de la durée d'exposition et de l'ouverture du diaphragme sur la formation de l'image.
[E	[21] CIRCUITS ÉLECTRIQUES DANS L'ARQS
Rer	narque : Cours et exercices.
	Exprimer la condition d'application de l'ARQS : $f \ll \frac{c}{L}$
	Vocabulaire : dipôle, nœud, branche, maille, en série, en dérivation
	Définir l'intensité du courant électrique comme un débit de charge à travers une surface
	Utiliser la loi des nœuds
	Définir le potentiel de référence
	Utiliser la loi des mailles

	Pour une résistance :
	– connaître la relation $u=Ri$ (loi d'Ohm)
	– tracer la caractéristique
	– démontrer la puissance perdue par effet Joule : $\mathcal{P}=Ri^2$
	Pour un condensateur :
	- connaître les relations $q = Cu$ et $i = C \frac{du}{dt}$
	- connaître les relations $q = Cu$ et $i = C \frac{du}{dt}$ - démontrer l'énergie stockée : $\mathcal{E}_{el} = \frac{1}{2}Cu^2$
	– savoir que u est toujours continue
	– savoir qu'il est équivalent à un circuit ouvert en régime stationnaire
	Pour une bobine :
	- connaître la relation $u = L \frac{di}{dt}$
	– connaître la relation $u=L\frac{di}{dt}$ – démontrer l'énergie stockée : $\mathcal{E}_{mag}=\frac{1}{2}Li^2$
	- savoir que i est toujours continue
	– savoir qu'elle est équivalent à un fil en régime stationnaire
	Pour un générateur de tension :
	– définir et tracer la caractéristique d'un générateur idéal
	– définir et tracer la caractéristique d'un générateur réel
	Trouver graphiquement un point de fonctionnement
	Énoncer et démontrer la résistance équivalente d'une association de deux résistances en série et en dérivation
	Énoncer et démontrer les formules des ponts diviseur de tension et de courant